Arrangements of Orthogonal Circles with many Intersections

Sarah Carmesin André Schulz

FernUniversität Hagen

September 17, 2021

Sarah Carmesin, André Schulz

Orthogonal Circles

September 17, 2021 1 / 14

I. Introduction

イロト イヨト イヨト イヨト

2

- I. Introduction
- II. Nonnested Orthogonal Circle Arrangements

< 行

- I. Introduction
- II. Nonnested Orthogonal Circle Arrangements
- III. General Orthogonal Circle Arrangements

- I. Introduction
- II. Nonnested Orthogonal Circle Arrangements
- III. General Orthogonal Circle Arrangements
- IV. Lower Bounds

Introduction

Sarah Carmesin, André Schulz

2

< □ > < □ > < □ > < □ > < □ >

Introduction

2

< □ > < □ > < □ > < □ > < □ >

Introduction

э

イロト イヨト イヨト イヨト

Sarah Carmesin, André Schulz

2

< □ > < □ > < □ > < □ > < □ >

• Circle Packing Theorem by Koebe, Andreev and Thurston

< □ > < 同 > < 回 > < 回 > < 回 >

• Circle Packing Theorem by Koebe, Andreev and Thurston

 Overlapping circles are not necessarily planar

э

→ ∃ →

< 47 ▶

• Straight-line RAC-Drawings

< □ > < 同 > < 回 > < 回 > < 回 >

 Straight-line RAC-Drawings have at most 4n - 10 edges (Didimo, Eades, Liotta (2011)).

- Straight-line RAC-Drawings have at most 4n - 10 edges (Didimo, Eades, Liotta (2011)).
- Arc-RAC Drawings

< 1 k

- Straight-line RAC-Drawings have at most 4n - 10 edges (Didimo, Eades, Liotta (2011)).
- Arc-RAC Drawings have at most 14n - 12 edges and there are some with $4.5n - O(\sqrt{n})$ edges (Chaplick, Förster, Kryven and Wolff (2020)).

Orthogonal Circles

Sarah Carmesin, André Schulz

3

< □ > < □ > < □ > < □ > < □ >

Orthogonal Circles

Definition

Two circles intersect orthogonally if and only if their tangents in their intersection points intersect at a right angle.

э

・ 何 ト ・ ヨ ト ・ ヨ ト

イロト イヨト イヨト イヨト

• introduced by Chaplick, Förster, Kryven and Wolff in 2019

• introduced by Chaplick, Förster, Kryven and Wolff in 2019

• introduced by Chaplick, Förster, Kryven and Wolff in 2019

Theorem (Chaplick, Förster, Kryven, Wolff (2019))

The intersection graph of an arrangement of n orthogonal circles has at most 7n edges.

Sarah Carmesin, André Schulz

イロト イヨト イヨト イヨト

Image: A mathematical states and a mathem

Theorem (C, Schulz (2021))

The embedded intersection graph of an arrangement of nonnested orthogonal circles is planar.

Theorem (C, Schulz (2021))

The embedded intersection graph of an arrangement of nonnested orthogonal circles is planar.

Lemma

No intersection graph of an orthogonal circle arrangement contains a K_4 or an induced C_4 .

Sarah Carmesin, André Schulz

æ

ヘロン 人間 とくほとくほど

<ロト < 四ト < 三ト < 三ト

Sarah Carmesin, André Schulz

æ

<ロト < 四ト < 三ト < 三ト

æ

Theorem (C, Schulz (2021))

The embedded intersection graph of an acute nonnested circle arrangement is noncrossing.

< 47 ▶

H N

Sarah Carmesin, André Schulz

Orthogonal Circles

September 17, 2021 10 / 14

イロト イヨト イヨト イヨト

Image: A matrix

Theorem (Chaplick, Förster, Kryven, Wolff (2019))

For every n, there is an intersection graph of orthogonal circles that contains K_n as a minor.

Theorem (Chaplick, Förster, Kryven, Wolff (2019))

For every n, there is an intersection graph of orthogonal circles that contains K_n as a minor.

Theorem (Chaplick, Förster, Kryven, Wolff (2019))

The intersection graph of an arrangement of n orthogonal circles has at most 7n edges.

Sarah Carmesin, André Schulz

Orthogonal Circles

Theorem (C, Schulz (2021))

The intersection graph of an arrangement of n orthogonal circles has at most 5n - 6 edges.

H N

Theorem (C, Schulz (2021))

The intersection graph of an arrangement of n orthogonal circles has at most 5n - 6 edges.

Lemma

In the intersection graph of an arrangement of n orthogonal circles we can find a subset V that is incident to at most 5n' - 6 edges, where n' = |V|.

A B b A B b

Image: A matrix

Image: A matrix

2

Image: A matrix

n' black circles

n' black circles 3n' - 6 black edges

n' black circles 3n' - 6 black edges

n' black circles 3n' - 6 black edges 2n' green edges

n' black circles 3n' - 6 black edges 2n' green edges 5n' - 6 edges incident to vertices of black circles

Sarah Carmesin, André Schulz

Orthogonal Circles

September 17, 2021 13 / 14

イロト イヨト イヨト イヨト

further analysis of the number of green edges leads to

- (日)

further analysis of the number of green edges leads to

Theorem (C, Schulz (2021))

The intersection graph of an arrangement of n orthogonal circles has at most $\left(4 + \frac{5}{11}\right)$ n edges.

Sarah Carmesin, André Schulz

3

<ロト < 四ト < 三ト < 三ト

Nonnested Orthogonal Circle Arrangements

Sarah Carmesin, André Schulz

September 17, 2021 14 / 14

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Nonnested Orthogonal Circle Arrangements

Sarah Carmesin, André Schulz

September 17, 2021 14 / 14

3

イロト 不得 トイヨト イヨト

Nonnested Orthogonal Circle Arrangements

General Orthogonal Circle Arrangements

< □ > < □ > < □ > < □ > < □ > < □ >

Nonnested Orthogonal Circle Arrangements

General Orthogonal Circle Arrangements

イロト イポト イヨト イヨト